

## Module/Course Description

Metabolism (BIK1208)

| <b>A.</b> M | A. Module Identity                        |                                                                                                                                                                                                                                                 |  |  |  |
|-------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1.          | Name                                      | Metabolism                                                                                                                                                                                                                                      |  |  |  |
| 2.          | Code                                      | (BIK1208)                                                                                                                                                                                                                                       |  |  |  |
| 3.          | Credit                                    | 2 (2-0)                                                                                                                                                                                                                                         |  |  |  |
| 4.          | Semester                                  | 2                                                                                                                                                                                                                                               |  |  |  |
| 5.          | Pre-requisite                             | -                                                                                                                                                                                                                                               |  |  |  |
| 6.          | Coordinator                               | Prof. Dr. drh. Hasim, DEA                                                                                                                                                                                                                       |  |  |  |
| 7.          | Lecturers                                 | <ol> <li>Prof. Dr. drh. Hasim, DEA</li> <li>drh. Sulistiyani, MSc. PhD.</li> <li>Dr. Waras Nurcholis, SSi, MSi</li> <li>Dr. Dimas Andrianto, SSi, MSi</li> <li>Dr. Inda Setyawati, STP, MSi</li> <li>Ukhradiya M. Safira P, SSi, MSi</li> </ol> |  |  |  |
| 8.          | Language                                  | Indonesian                                                                                                                                                                                                                                      |  |  |  |
| 9.          | Program(s) in which the course is offered | <ol> <li>Bachelor of Biochemistry</li> <li>Bachelor of Chemistry</li> <li>Bachelor Program in IPB as Supporting<br/>Course (minor course)</li> </ol>                                                                                            |  |  |  |
| 10.         | Type of teaching                          | <ul> <li>Traditional classroom: 90 % (Problem/Case-Based Learning)</li> <li>e-Learning system:10%</li> </ul>                                                                                                                                    |  |  |  |

|        | ·kload<br>ester) | of cours | e compor | ients (total | contact l | nours an | d credi                   | ts per |
|--------|------------------|----------|----------|--------------|-----------|----------|---------------------------|--------|
| Cre    | dit              |          | Conta    | ict Hours    |           | Self-    | Other                     | Total  |
| SKS *) | ECTS             | Lecture  | Exercise | Laboratory   | Practice  | study    | (Group<br>Discuss<br>ion) |        |
| 2      | 2.8              | 28       | -        | -            | -         | 42       | 20                        | 90     |

\*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester \*\*) 1 hour for lecture= 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

## C. Module Objective (Learning Outcomes)

Student are able to explain general concepts and principles of bioenergetics in metabolism and the metabolic processes of carbohydrates, lipids, proteins and nucleotides.

| Γ   | D. Detailed Course Learning Outcomes (LO) in Relation to Learning                                                                                                                                                                                                                                                                                             |                                                                   |                           |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|--|--|
| E   | Domains, Teaching Strategies, and Assignment Methods                                                                                                                                                                                                                                                                                                          |                                                                   |                           |  |  |
| No. | LO in Learning Domains                                                                                                                                                                                                                                                                                                                                        | Teaching<br>Strategies                                            | Assessment<br>Methods     |  |  |
| a.  | Knowledge                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                           |  |  |
| 1.  | Students are able to explain the concepts<br>and principles of bioenergetics and their<br>relationship to metabolic processes in<br>general                                                                                                                                                                                                                   | lecture,<br>discussion/quest<br>ion-and-answer                    | Mid-Term<br>Examination   |  |  |
| 2.  | Students are able to explain metabolism<br>of carbohydrate, the process of electron<br>transport in the mitochondria (oxidative<br>phosphorylation)                                                                                                                                                                                                           | lecture,<br>discussion/quest<br>ion-and-answer                    | Mid-Term<br>Examination   |  |  |
| 3.  | <ul> <li>Students are able to explain the details of the stages in the process:</li> <li>Fatty acid biosynthesis, fatty acid extension and differences between plants and animals</li> <li>β-oxidation of palmitic acid and its energy balance</li> <li>Ketogenesis</li> <li>Synthesis of cholesterol &amp; steroid hormones from cholesterol</li> </ul>      | Problem/Case-<br>Based Learning<br>(PBL/CBL),<br>group discussion | Final-Term<br>Examination |  |  |
| 4.  | <ul> <li>Students are able to explain the details of the stages in the process:</li> <li>Protein turnover pathways, proteolytic enzymes, oxidative and non-oxidative deamination of amino acids, decarboxylation of amino acids, and GS/GOGAT.</li> <li>General metabolism of phenylalanine, valine and methionine</li> <li>Advanced metabolism of</li> </ul> | Problem/Case-<br>Based Learning<br>(PBL/CBL),<br>group discussion | Final-Term<br>Examination |  |  |

|    | glucogenic, ketogenic and gluco-<br>ketogenic amino acids<br>● Urea cycle |                  |              |
|----|---------------------------------------------------------------------------|------------------|--------------|
| 5. | Students are able to explain and describe                                 | Problem/Case-    | Final-Term   |
|    | the biosynthetic pathways of purine and                                   | Based Learning   | Examination  |
|    | pyrimidine nucleotides (de novo and                                       | (PBL/CBL),       |              |
|    | salvage pathways)                                                         | group discussion |              |
| b. | Competences                                                               |                  |              |
| 1. | Students are able to explain general basic                                | lecture,         | Mid-Term     |
|    | biochemistry related to mobile processes                                  | discussion/quest | Examination, |
|    | (biology), chemistry and physics                                          | ion-and-answer   | Final        |
|    |                                                                           |                  | Examination  |
| 2. | Students are able to work in groups,                                      | Practice, group  | Paper        |
|    | express opinions verbally and in writing                                  | and individual   | assignment   |
|    |                                                                           | work, Discussion | _            |

| E. Course Content                            |                    |                   |  |  |
|----------------------------------------------|--------------------|-------------------|--|--|
| List of Topic                                | Number of<br>Weeks | Contact<br>Hours* |  |  |
| Introduction to Bioenergetics and Metabolism | 1                  | 2                 |  |  |
| Carbohydrate metabolism                      | 6                  | 12                |  |  |
| Lipid Metabolism                             | 3                  | 6                 |  |  |
| Protein Metabolism                           | 3                  | 6                 |  |  |
| Nucleotide Metabolism                        | 1                  | 2                 |  |  |

\*not include self-study and discussion outside class

| F. Course Assessment |                                                   |                        |                              |  |  |
|----------------------|---------------------------------------------------|------------------------|------------------------------|--|--|
| No.                  | Assessment Type *)                                | Schedule<br>(Week Due) | Proportion of the Final Mark |  |  |
| 1.                   | Mid-term examination                              | week 8                 | 25%                          |  |  |
| 2.                   | Final examination                                 | week 16                | 25%                          |  |  |
| 3.                   | Paper Making (PBL/CBL Report)<br>and Presentation | week 4,7,10, and 14    | 50%                          |  |  |

\*) Example: mid-term examination, final examination, quiz, homework, project, etc.

## G. Media Employed

- 1. Power Point Presentation
- 2. Laptop, LCD, microphone, whiteboard, marker, pointer.

## H. Learning Resources

- 1. Nelson DL & Lox MM. 2017. *Lehninger Principles of Biochemistry*. 7th Ed. New York USA: W. H. Freeman and Company.
- 2. Mc Kee T & Mc Kee JR. 2003. *Biochemistry: The Molecular Basis of Life*. 3rd Ed. New York USA: The McGraw Hill Company, Inc.
- 3. Related articles (based on Problem/Case given)