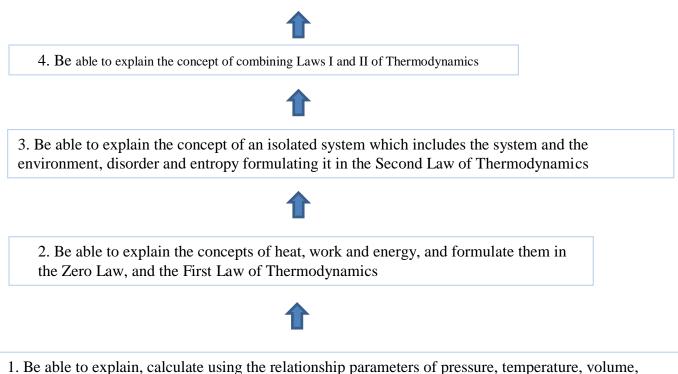
Instructional Analysis (IA) AND ONE SEMESTER LEARNING PLAN (RPSS)

Thermodynamics (KIM 1241 2(2-0))

By: Dr. Sri Mulijani, MS Dr. Komar Sutriah, MS Dr. Henny Purwaningsih, MS

Department of Chemistry Faculty of Mathematics and Natural Sceinces INSTITUT PERTANIAN BOGOR 2 0 20


Instructional Analysis

Learning Outcomes :

Be able to understand process of physical/chemical transformation of the material, energy is the key factor and plays the most role in controlling of the transformation process.

Be able to understand the law of the conservation of energy, quantify the energy level of the process of changes in internal energy, enthalpy, entropy and free energy.

Be able to understand thermodynamics to predict, simulate material transformation trends through process variables

number of moles, and intermolecular interactions, in the formula of the equation of state of an ideal gas,

SYLLABUS

Course Name/Code	:	Thermodynamics /KIM 1241
Semester/Credit	:	Odd (Semester 3) / 2(2-0)
Description	:	This course discusses the laws of thermodynamics which can be used as a quantitative measure of the degree of tendency of material physical/chemical transformation processes. The level of spontaneity/non-spontaneity of material physical/chemical transformations can be measured using the magnitudes of internal energy, enthalpy, entropy and free energy. The advantage of the study of thermodynamics is its ability to predict a process to be studied by relating it to existing process data using interconnected standard state rules. The ability to apply thermodynamic concepts will greatly assist in supporting the success of synthesis (material transformation) and/or separation without having to use a trial and error approach. Simulation of changing process variables such as temperature and pressure in a direction that produces a thermodynamically spontaneous reaction, will help the success of research without having to carry out repeated experiments. To get to that stage requires a fundamental and comprehensive understanding of the laws of thermodynamics which is the topic of discussion in this course. The scope of the discussion and the learning process is to use active learning through small group discussions, cooperative learning, and assignments. The language of instruction used in this course is Indonesian.
Prerequisite Courses	:	None
Learning Outcome (LO)	:	 Mampu memahami proses transformasi fisika/kimia terhadap material, energi merupakan faktor kunci dan paling berperan dalam mengontrol terjadinya peristiwa tersebut Mampu memahami hukum kekekalan energi, kuantifikasi tingkat energi proses perubahan dalam bentuk energi dalam, entalpi, entropi dan energi bebas. Mampu memahami termodinamika untuk memprediksi, mensimulasi kecenderungan transformasi material melalui variabel proses
Divisi/Bidang Ilmu	:	Kimia Fisik/Termodinamika
Dosen	:	 Dr. Sri Mulijani, MS Dr. Komar Sutriah, MS Dr. Henny Purwaningsih, MS

Rencana Pembelajaran Satu Semester (RPSS) Kuliah:

WEEK	LEARNING OUTCOME	ΤΟΡΙϹ	METHOD	INDICATOR	GRADE (%)
1	2	3	4	5	6
1 & 2	Able to explain, calculate using the relationship parameters of pressure, temperature, volume, number of moles, and intermolecular interactions, in the formula of the equation of state for ideal gases and real gases.	 Understanding of temperature, pressure, number of moles and intermolecular forces. Understanding of isothermal processes, isobars, isochores. Intermolecular interactions and gas compressibility factors. Virial equations and van der Waals equations. 	Lectures, interactive discussions	Completeness and accuracy of explanations and calculations regarding temperature, pressure and intermolecular forces, isothermal processes, isobars, isochores, compressibility factors, virial and van der Waals equations.	
3, 4, 5,6,7	Able to explain the concepts of heat, work and energy, and formulate them in the Zero Law and First Law of Thermodynamics.	 The concept of system and environment, energy as heat and work. Reversible and irreversible processes, state function and path function, extensive and 		Completeness and correctness of explanations and calculations regarding energy, heat and work in reversible and non- reversible states. Formulation of the First Law involving ΔU , ΔH and their measurements. Standard state energies, transitions, dissolving and	

	intensive	Born-Haber cycles. As well]
	properties.	as the effect of temperature	
	3. The concept of	on enthalpy and adiabatic	
	ΔU , ΔH , and their	changes	
	formulation in the		
	formulation of the		
	First Law, and		
	how to measure		
	them by		
	calorimetry.		
	4. Standard state		
	enthalpies, phase		
	transition		
	enthalpies,		
	dissolution		
	enthalpies, lattice		
	energies and		
	hydration energies		
	in the Born-Haber		
	cycle.		
	5. The dependence of		
	enthalpy on		
	temperature, the		
	Joule experiment,		
	and the Joule-		
	Thomson		
	experiment, and		
	the adiabatic		
	change for the		
	phenomenon of		
	decreasing		
	temperature		
Midterm Exam			50

8,9,10	Be able to explain the concept of	1. Entropy, entropy	Lectures,	Completeness and
0,7,10	an isolated system which includes	change (Δ S) and	interactive	correctness of explanations
	the system and the environment,	change in Gibbs	discussion	and calculations regarding
	disorder and entropy formulating it	free energy (ΔG)	uiscussion	the determination and
	in the Second Law of	as criteria for		
				calculation of entropy
	Thermodynamics	spontaneity in the		changes, Gibbs. Third law
		material		of thermodynamics and
		transformation		entropy in transformation
		process		processes, engine efficiency
		2. The Third Law		and Carnot cycles, adiabatic
		and the entropy of		work
		a perfect crystal		
		state at T=0K		
		3. Measurement of		
		entropy in a		
		transformation		
		process, and the		
		concept of		
		efficiency of heat		
		engines and		
		Carnot cycles.		
		4. Calculate work to		
		maintain low		
		temperature and		
		adiabatic		
		demagnetization.		
11,12,13	Be able to explain the concept of	1. Gibbs free energy	Lectures,	The completeness and
,14	combining the first and second laws	change(ΔG) as a	interactive	correctness of explanations
	of thermodynamics	criterion for	discussion	and calculations regarding
		process		Gibbs free energy $(\Box G)$ as
		spontaneity which		criteria for spontaneity,
		focuses only on		incorporation of laws I and
		the system.		II, derivation of the

	 2. 2. Combining Law and II, deriving the thermodynamic equation of state 3. Chemical potential and fugacity for real gases. 4. Dependence of Gibbs free energy on temperature. 	equation of state, chemical potential and functionality, and the effect of temperature on Gibbs free energy. Explaining the effect of temperature on reaction rates.
Final Exam	I I I I I I I I I I I I I I I I I I I	50

Assessment Plan:

Learning achievement	Lecture Exam		
Learning achievement	Midterm exam	Final Exam	
1.Be able to understand the process of physical/chemical transformation of			
materials, energy is a key factor and plays the most role in controlling the			
occurrence of these events			
2.Be able to understand the law of conservation of energy, quantification of			
energy levels the process of change in the form of internal energy, enthalpy,			
entropy and free energy			
3. Be able to understand thermodynamics to predict, simulate	2		
tendency of material transformation through process variables	V	v	

Grade Assessment:

Criteria Assessment	Grade	Grade in (%)	Remarks
 Weekly Assignments Assessment Small group presentation: Systematics and presentation content; Timeliness of delivery; Good use of language; Ability to respond to questions (accurate or not); Attitude in delivering the material (eye contact, posture, neat appearance) Clarity of presentation (voice volume and intonation). Small group discussion and cooperative learning: Communication Aspect: provide specific and easy-to-understand explanations; using methods/tools (gestures, analogies and concept maps) to help colleagues understand messages; Use a constructive way of expressing opinions and feelings. Discussion aspect: not dominating the discussion and actively contributing. Aspect of Openness: asking for feedback on himself and respecting the opinions of colleagues; using the knowledge and experience of other members in the group as a source of knowledge. Other Behavioral Aspects: working together to develop group work plans and carry out evaluations; willing to accept special assignments/roles and share responsibilities. 	55-100	50	Individual
Lecture Assessment: Midterm Exam Quis Final exam	0-100 0-100 0-100	20 10 20	Individual Individual Individual
Grade Thermodynamics (KIM 1241 2(2-0))			

Criteria for assessing weekly assignments with instruments: group assessment forms and presentations

Rate Grade	Material Presentation Assessment Criteria	
90-100	if students can present material with good systematics, timely delivery, good use of language, ability to answer	
	questions properly/accurately, good and clear presentation of material.	
80<90	if students can present material with good systematics, timely delivery, good use of language, ability to answer	
	questions properly/accurately	
70<80	if students can present material with good systematics, timely delivery, use of good language,	

Refferences:

- 1. Atkins and Paula, 2010, Physcal Chemistry, 9th Ed, Oxford University Press, USA.
- 2. P.W.Atkins, 1994, Kimia Fisika, Edisi Keempat, Erlangga, Jakarta.
- 3. Metz.C.R, 1989, Theory and Problems of Physical Chemsitry, 2rd Ed, Schaum Series McGraw-Hill, USA.
- 4. Alberty, RA, 1992, Kimia Fisik Jilid I, Edisi kelima, Jakarta, Erlangga.